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Microlensing Basics. 
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Microlensing Events. 

µ ~ 1−15 mas/year, θE ~ 0.1− 2 mas



Microlensing Event Rates. 
•  Require a close alignment of ~1 mas.  
•  The event rate depends on the density 

distribution of masses along the line of sight.   
•  Event rate highest for stars in Galactic bulge.  

•  Total number of events depends on the 
luminosity function of bulge sources. 

Γ ≈ 10
−5
yr

-1



Bulge Luminosity Function. 

•  Fainter → more 
sources 

•  Fainter → smaller 
sources 

•  Fainter ⇔ FOV 
•  Longer wavelength →  

smaller sources, more 
extincted regions, 
higher event rates. 



Microlens Mass Spectrum. 

Slight preference for 
higher mass lenses 
due to their larger 
Einstein ring radii. 

⇒Most sources are at turn-off 
or just below. 

⇒ Most lenses are <M, 
⇒ Most lenses are fainter 

than (and blended with) the 
sources. 

⇒ Lenses distributed along 
the line of sight (distances 
of 1-8 kpc) 



•  Probabilistic 
–  Must quantify the 

detection efficiency to 
infer frequencies. 

–  Well-developed and 
well understood. 

•  High-Magnification 
means 
 High Efficiency 

•  Maximized when 
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Detecting Planets. 



High Magnification Events 
Why high-mag events rule: 

Nearly 100% efficiency. 
 (Griest & Safizadeh 1998) 

Localized perturbations. 

Predictable. 

Sensitive to multiple planets 
systems. 

However, low-mag events are 
more plentiful, and the overall 
rate of perturbations is 
dominated by low-mag, 
unpredictable perturbations.  



Perturbations: separation dependence 

•  Works by 
perturbing images  

•  Sensitive to wide 
or free-floating 
planets 

•  Not sensitive to 
very close planets 
(signal size is limited, 
perturbing 
demagnified images, 
blended with brighter 
image). 
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Perturbations: separation dependence 
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perturbing images  

•  Sensitive to wide 
or free-floating 
planets 

•  Not sensitive to 
very close planets 
(signal size is limited, 
perturbing 
demagnified images, 
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Perturbations: mass ratio dependence 

•  Magnitude depends on 
separation of planet from 
image. 

•  Duration depends on mass 
ratio. 

•  Detection probability 
depends on mass ratio. 

Signal magnitude is independent of planet mass ratio.	
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Requirements. 
•  Event Rate 

–  Primary Event Rate 

–  Detection Probability 

–  Detections Per Year 

Γ ≈ 10
−5
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Requirements Part 2. 

Detecting the Perturbations from Earth-mass 
Planets 

•  Sampling rate ~ 10 minutes 

•  Photometric Accuracy ~ 1% at I~21 
–  Signal Magnitude 

–  Photometric Uncertainty 
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Perturbations: Characteristics 
•  Large and distinctive. 

–  Essentially no astrophysical false 
positives. 

–  Do not require extremely precise 
photometry in general. 

•  Do no need to to worry about 
stellar variability, systematics. 

•  Shallow distribution of Δχ2 

–  dN/dΔχ2 ∝ (Δχ2)-1.3 (index -2 to -3 
for RV and transits) 

–  Relatively gentle degradation.  
•  Not operating at S/N threshold 

–  Do not need to worry about 
statistical false postiives. 

•  Perturbation parameters: 
–  Duration ⇒ Mass Ratio 
–  Time of Perturbation ⇒ Projected 

separation in θE 



Limits: lower mass limit 
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• When              , top-hat 
perturbations, with height          
and duration             ~ few hours 
for major image perturbations. 
• For minor image perturbations 
no excess magnification.	



(Bennett & Rhie 1996)	
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Limits: Lower Mass Limit 

•  The finite size of the sources sets the ultimate 
lower mass limit for detection. 

•  The source crossing time sets the required 
cadence of ~10 minutes.   

•  Small sources allow the detection of smaller 
planets 
– Late type stars - fainter, IR.  

•  Source size more important for closer planets. 



Limits: Habitable Planets. 

•  Habitable zone is well interior 
to the Einstein ring radius for 
most lenses. 

•  Minor image perturbations. 
•  More sensitive to source size. 
•  Require better precision. 
•  Can be made up by more 

time through the “x” factor. 

 

RHZ

RE
~ 0.3 M

M⊙

⎛

⎝
⎜

⎞

⎠
⎟

~3/2

[x(1− x)]1/2

 
RE =θEDl ~ 3.5AU M

M⊙

⎛

⎝
⎜

⎞

⎠
⎟

1/2

[x(1− x)]1/2 ,   x ≡ Dol

Dos

 
RHZ ~ AU M

M⊙

⎛

⎝
⎜

⎞

⎠
⎟

~2



What do we measure? 
•  For nearly all events*:  

–  mass ratio 
–  projected separation in Einstein ring radius. 
*Need to measure primary event properties. 

•  For most low-mass planet detections (and a large 
subset of higher-mass detections) 
–  Einstein ring radius through finite source effects. 
–  Gives a relationship between mass and distance of lens.  

•  Finally measure mass through a number of ways: 
–  Isolate flux from the lens. 
–  Measure microlens parallax (different relationship 

between mass and distance). 



Projected Separations. 



Do you learn anything from planet 
detections with no primary mass 

measurement?!?! 
• You Betcha! 
•  Exploring new regions of parameter space 

–  For example, a measurement of the frequency of ~10-7 
mass ratio planets near the Einstein ring would be very 
interesting. 

–  Or, measuring the frequency of ~10-5 mass ratio 
planets at ~10 Einstein radii.  

•  Furthermore, many of the host star mass 
measurements will be recoverable eventually 
(killer app for 30m telescopes with AO). 



Ground vs. Space 
•  Infrared. 

–  More extincted fields ⇒ higher event rates. 
–  Smaller sources ⇒ smaller planets, close-in planets.  

•  Resolution 
–  Low-magnification events with main-sequence sources ⇒ higher 

event rates, smaller planets. 
–  Isolate light from the lens star ⇒ Host mass characterization for the 

majority of events.  
•  Coverage 

–  Complete coverage ⇒ Better characterization 
•  Smaller systematics 

–   Better characterization of parameters, more robust quantification of 
efficiencies.  

Science: sub-Earth mass planets, habitable planets, 
free-floating planets, mass measurements. 



What is the science? 
•  Understanding Planet Formation (hard!) 

–  Must understand the physical processes by which µm 
sized grains grow by 10~13-14 in size and 10~38-41 in 
mass. 

–  The various physical processes are imprinted on the 
distribution functions of mass, semimajor axis, as a 
function of host star mass. 

–  The plan: measure these distribution functions as 
accurately as possible over as broad a range of planet 
and host properties as possible!  (Measure the 
demographics of exoplanets.) 

–  Kepler : a<2 AU, M>MEarth; WFIRST: the rest. 
•  Habitable Planets 

–  Measure the frequency of potentially habitable planets. 
–  Must understand habitability. 



Specific Questions: 
Abundances of planets: 
•  How does the frequency of planets depend on location in the Galaxy? 
•  Is planet ejection a common by-product of planet formation and evolution? 
•  How do planet frequencies depend on primary mass? 
•  How common are Mars-mass planets? 
Architectures of Planetary Systems: 
•  Do most giant planets migrate?  Or stay close to their supposed birth sites? 
•  What is the frequency of solar system analogs? 
•  Is the distribution of planet masses beyond the snow line different from close-

in planets? (or, how does migration sort planets?) 
•  What are the architectures of multi-planet systems beyond the the snow line? 
•  Are there features and/or breaks in the mass function of planets beyond 

the snow line? 

Habitable Planets and Habitability 
•  What is the frequency of solar system analogs? 
•  What are the frequencies of potentially habitable planets? 
•  What are the frequencies of massive moons? 



Quantitative Science Goals. 
•  (SG1) Determine the mass ratio, and projected 

separation probability distribution (in units of the 
Einstein ring radius) for cold planets with M>MEarth 
and a>0.5 AU to a precision TBD. 

•  (SG2) Measure the frequency of potentially 
habitable planets to a precision TBD. 

•  (SG3) Measure the frequency of free-floating 
planets with M> MEarth  to a precision TBD. 

•  (SG4) Measure the host star masses of XX% of 
the detections in order to determine the mass and 
projected separation distributions in physical 
units. 



Defining a FOM. 
•  Difficulty: collapse the entire N-dimensional 

parameter space of the properties of the detected 
planets to one number. 

•  Considerations: 
–  Should not encompass a large range of detection 

sensitivities. 
–  Should be focused on the region of interest and novel 

capabilities. 
–  Should not straddle any detection thresholds for 

reasonable mission designs. 
–  Should be directly relatable to, and hopefully scale 

simply with, the other mission products. 
–  Should be directly related to the mission properties (if 

possible) and hopefully amenable to analytic insight.  



Primary Figure of Merit 
•  (FOM1)  Number of planets detected (at 
Δχ2=160) with 0.5-2MEarth and 1.25-5 AU, 
assuming every main-sequence star has one 
planet logarithmically distributed throughout 
this range. 

•  For a 4 × 9 month MPF mission, this FOM~400.            
(Note MPF is 1.1m, ~0.65 sq. deg, 0.25” pixels). 

•  Consistent with RV, Microlensing extrapolations (Sumi et al. 
2010, Howard et al. 2010) 

•  (if 20% of MS have such planets, we will detect ~80 
planets and will measure this frequency to ~10%.) 







Secondary FOM 
•  (FOM2) The number of habitable planets 

detected assuming every MS star has one, where 
habitable means 0.5-2MEarth, and [0.8-1.7 AU](L/
Lsun)1/2 

•  (FOM3) The number of free-floating 1-10 MEarth 
planets detected, assuming one free floating 
planet per star. 

•  (FOM4) The fraction of the planets detected in 
FOM1 for which masses can be measure to 20% 
(for MPF, this fraction was more than half). 







To Do. 
•  Agree on primary and secondary FOM. 
•  Determine how the FOM vary as a function of the 

mission parameters.  
–  FOV, Aperture, Pixel Size, Total Observing Time. 

•  Given a FOM, determine the accuracy with which 
one can measure the planet distribution functions 
and achieve the science goals.  

•  Define a baseline mission.  


